CRSS/FANR 3060: Soils and Hydrology Exam 2 / SPRING 2009

Name ___

Lab Section #

- I. Multiple Choice: circle the one best answer; 2 pts. each.
- 1. A "fertile" soil is defined (specifically) as a soil with--
 - A. no limiting factors for plant growth.
 - B. large numbers of soil organisms such as worms, insects, etc.
 - C. a relative abundance of available nutrients and no excessive acids, salts, etc.
 - D. no need for any additional fertilizer or other amendment to give maximum yields
 - E. high concentrations of humus and other essential growth factors
- 2. A major advantage of using organic fertilizers, compared to commercial synthetics, is--
 - A. they have a high analysis compared to other fertilizers
 - B. their nutrients are highly soluble and readily plant-available
 - C. they add C to the soil, increasing humus levels, and also add other nutreints
 - D. only small amounts need to be applied, which can lower fertilizer costs
 - E. none of the above are true
- 3. Gypsum (CaSO₄) is--
 - A. less soluble than lime.
 - B. produced by removing SO₂ (acid rain) from power plants.
 - C. useful for raising the pH of soils.
 - D. often causes a large decrease in soil pH.
 - E. too expensive for common agricultural use.
- 4. When a low (20:1) C:N residue is mixed into a soil, which of the following would occur?
 - A. N is immobilized rapidly, but eventually released as the C:N ratio is lowered over time.
 - B. N is readily mineralized due to the rapid decomposition by bacteria.
 - C. some N is mineralized into solution, but is guickly nitrified and made unavailable.
 - D. the C:N ratio increases rapidly as NH₄ and NO₃ are removed from the soil.
 - E. very little decomposition occurs because this residue is probably mostly lignin.
- 5. A major role that soil organisms play in cycling of many nutrients is--
 - A. enhancing the loss of nutrients by encouraging leaching.
 - B. removing nutrients from cycles by permanently immobilizing them.
 - C. adding large amounts of new nutrients to cycles by weathering soil minerals.
 - D. converting organic nutrients back to inorganic forms during decompsition.
 - E, more than one of the above.
- 6. Which of the following is a result of liming an acid soil?
 - A. aluminum solubility increases
 - C. % base saturation decreases
- B. (H^+) concentration in solution decreases
- D. soil pH decreases
- E. cation exchange capacity decreases
- 7. Which one of the general forms of nutrients in soils is the *least* plant-available?
 - A. ions in the soil solution

- B. strongly adsorbed nutrients
- C. nutrients held within mineral structures
- D. ions held on CEC and AEC sites
- E. all of the above are equally plant-available
 - -1-

- 8. Permanent charge on clay minerals is caused by--
 - A. replacement of one cation by another of lower charge during mineral formation
 - B. cations being strongly held on the mineral surface (adsorption)
 - C. adsorption of hydroxyl (-OH) groups from solution under alkaline conditions
 - D. protonation of functional groups in the interlayer space
 - E. changes in the structure of clays due to weathering over geologic time

9. The best way to sample soil from a field to evaluate fertilizer needs is to--

- A. lay out a grid on the field and sample at evenly spaced intervals.
- B. take a shovelful of soil from near the center of the field.
- C. take a composite sample of 10-15 random locations within the field.
- D. sample along a transect from one end of the field to the other.
- E. any of the above would be OK.

II. Matching: write the letter of the best answer in the blank; use each answer only once. 1 pt.

 10. Clay Minerals:
 A. illite (hydrous mica)

 low CEC, 1:1, common in highly weathered soils
 B. vermiculite

 2:1, high octahedral charge; large shrink/swell capacity
 C. montmorillonite

 2:1, v. high tetrahedral charge; limited shrink/swell
 D. kaolinite

 initial weathering product of muscovite; partial K interlayer
 E. chlorite

11. N cycle:

 $\underbrace{\qquad N_2 (g) \rightarrow \text{ organic N}}_{NH_4^+} \rightarrow \text{ organic N}$ $\underbrace{\qquad Organic N \rightarrow NH_4^+}_{NO_3^-} \rightarrow N_2 (g)$

- A. immobilization
- B. denitrification
- C. symbiotic N fixation
- D. nitrification
- E. mineralization

12. Laws/Principles:

- describes how chemical equilibria respond to disturbance D. Diminishing Returns
- **13. Fill-In:** write a single word or phrase that matches the definition; 1 pt.

pH o	of a solution containing 10 ⁻⁴ moles/L HCI
sym	biotic fungi that enhance plant root uptake of nutrients like P
6 x 1	10 ²³ of something (like, atoms)
арс	ollutant element that behaves in soil similarly to micronutrient anions
elen	nent that can substitute for Si in tetrahedral structure of clay minerals
lab i	instrument used to measure cation (Ca, Mg) concentrations in solution
term	n for limestone that includes a significant amount of Mg
met	hod used to measure acid concentrations in solutions
nam	ne or formula of most important charge-generating group on humus
gen	us of bacteria that can symbiotically convert $N_2(g)$ into organic N
trad	e term referring the potassium, or fertilizer containing K

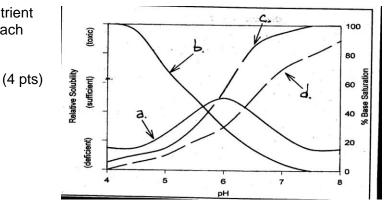
III. Short Answer/Calculation: write a short response to the following; do not restate the question, but give examples when necessary. For calculation, show all your work clearly. *NOTE:* Ca: 40 Mg: 24 K:39 P: 31 O: 16 H: 1 N: 14 C: 12

14. List and briefly explain three ways that increasing levels of humus in soils tend to increase overall soil productivity. (3 pts.)

15. Show/explain how charge is developed on humus, and how pH affects this charge. (3 pts)

16. A soil contains the following exchangeable catio	ns (in meq/100 g): Mg: 0.5; Ca: 2.3; K: 0.3;
H: 0.5; Al: 1.9. Calculate: A. CEC	(2 pts)
B. %BS:	(2 pts)
C. lbs K/afs:	(3 pts)

17. A plastic-coated clod weighing 44 g was immersed in water and found to displace 35 g. of water. (4 pts.)
 A. Calculate bulk density, showing *units*.


B. Calculate % pore space

C. If this sample came from a loamy A horizon, is this BD favorable value for plant growth?

- A mechanical analysis on 50 g soil gave a 40-sec hydrometer reading of 18 g/L, and a 6-hr (second) reading of 8 g/L. Calculate the % sand, silt and clay in this sample, and estimate the textural class of the soil. (4 pts.)
- 19. Convert 1.55 g/cm³ to lbs/ft³ [454g=1lb, 2.54 cm=1 inch]. (3 pts)
- 20. In measuring CEC, cations are extracted from 2.5 g soil using 40 mL of salt solution. This solution is found to contain 1.7 meq/L of Ca. Calculate exchangeable Ca in meq/100 g. (3 pts)

21. For the graph at right, identify the nutrient or nutrient *group* that corresponds with each line:

- a._____ (
- b. _____
- C. _____
- d. _____

BONUS:

A. Nitrogen is NOT shown on the graph in 21. above. Explain briefly why not. (2 pts)

B. How many mL of 1 N acid would it take to completely neutralize 1 g of pure CaCO₃? (2 pts)

C. What is your favorite micro-nutrient cation? _____ (1 pt)