NAME_

Lab Section #_

CRSS/FANR 3060: SOILS AND HYDROLOGYHOURLY EXAM #1SPRING 2014

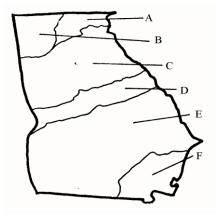
I. Multiple Choice: Circle the *best* answer for each question.

- 1. The most important process in forming older, mature landscapes from initially level ones is--A. surface erosion and losses of soluble minerals by weathering
 - B. tectonic (mountain-building) activity

C. deposition of geologic material by wind and water

- D. the action of glaciers and other agents in importing new parent material
- E. earthquakes and volcanic events
- 2. The Piedmont region of the Southeast, compared to the Midwestern Great Plains, has
 - A. soils with more soluble salts
 - B. less overall landscape relief
 - C. more highly weathered soils that are more highly leached
 - D. shallower soil profiles due to higher erosion rates
 - E. soils that are more poorly drained
- 3. The major mineral that weathers by hydrolysis to form clay minerals and oxides is-A. gypsum B. quartz C. hematite D. feldspar E. calcite
- 4. Which of the following is an important function of *macro-pores* in soils?
 - A. drain excess infiltrated water from the soil profile
 - B. store water for later use by plants
 - C. provide space for soil microbes to live in soils
 - D. prevent excessive leaching of water and nutrients from soil by slowing percolation
 - E. *all* of the above are functions of micro-pores
- 5. A common problem managing fine textured soils is---
 - A. they have too few macro-pores and are often poorly aerated
 - B. they hold little water due to the predominance of macro-pores
 - C. they are difficult to compact properly, leading to too much pore space
 - D. they always have high bulk densities, causing poor root growth
 - E. none of the above
- 6. Which of the following horizons is/are *eluvial* (cirle all that apply)? A E B C R
- 7. Which of the following is true of an Fe oxide surface at low pH (acidic conditions)? A. it is uncharged due to the balance between H and OH
 - B. it takes on a negative charge due to loss of protons to the solution
 - C. it becomes highly protonated, and develops a positive charge
 - D. it is surrounded by H_2O molecules, and is therefore negatively charged
 - E. its surface area increases, but the charge remains constant over all pH's

2 pts. each.


8. Two soil components that have appreciable pH-dependent charge are (circle TWO)--A. kaolinite B. Fe oxides C. montmorillonite D. humus E. muscovite

9	_ light colored metamorphic rock found near Athens
10	
11	_ type of weathering reaction that transforms FeOOH into Fe_2O_3
12	_ an element that substitutes for Si in the tetrahedral layer of clay minerals
13	_ the "average" particle density of most common soil minerals
14	_ a functional group on humus that can be positively charged at low pH
15	_ an exchangeable cation that is considered to be "acidic"
16	_ parent material laid down in ancient lake beds
17	_ clay mineral that results from initial weathering of muscovite by hydrolysis
18	_ movement of water downwards through the soil profile toward a water table
19	_ number of tons of soil in an average acre-furrow slice
20	_ soil forming process that most directly results in formation of A horizon

III. Matching: Write the letter of the best response in the blank; 1 pt. each

21. Georgia regions

- _____ igneous and metamorphic rocks; rolling topography
 _____ limestone, shale, sandstone on steep topography
- _____ poorly drained, recent marine sediments; Spodosols sandy aeolian parent material, formerly beach front

22. Soil forming Factors (choose only ONE, but use answers more than once if needed)

A. Time

- _____ why Histosols form in certain areas
- _____ causes difference between Ultisols and Alifsols in GA Piedmont
- _____ results in Mollisol formation on Great Plains of Midwest
- _____ reason for Oxisol formation in Hawaii

- B. Parent material
- C. Relief
- D. Organisms
- E. Climate

- 23. As soils are compacted by tillage or traffic, indicate whether the following soil properties INcrease (\uparrow), DEcrease (\downarrow), or stay the SAME/are unaffected (--).
 - ____bulk density
 - ____macropore space
 - ____particle density
 - ____micropore space
- 24. As soil humus levels are increased over a period of years, indicate whether the following soil properties INcrease (\uparrow), DEcrease (\downarrow), or stay the SAME/are unaffected (--).
 - ____bulk density
 - ____CEC
 - _____aggregation (granular structure)
 - ____soil pH
- *IV. Short Essay/Problems:* Write a concise, to-the-point, legible answers to the following questions; *show* your calculations for any partial credit. 3 pts. each.
- 25. A map with a scale of 1:36,000 gives a length of a stream channel to be 6.5 inches; if the channel drops 150 feet in elevation over this distance, calculate the channel gradient in %.
- 26. Use Le Chatilier's principle to explain how the solubility of Al changes as pH changes, using the following reaction:

 $\mathrm{Al}(\mathrm{OH})_3(\mathrm{s}) + 3\mathrm{H}^+ \leftrightarrow \mathrm{Al}^{+3} + 3\mathrm{H}_2\mathrm{O}$

27. Define "base saturation" of a soil in words; from a plant growth point of view, do we want %BS to be high or low?

28. Explain briefly the major differences between *permanent* and *variable* charge in soils; give example minerals that contain each kind of charge.

- *V. Soil Profiles:* Write the full, correct horizon designations in the blanks next to each horizon, and answer the questions following the soil description. 1 pt. per blank
- 29. Dothan series, 0-2 % slopes, in upland cultivated field, Coastal Plain province.
- ____0 to 8 inches; dark greyish brown (10YR 4/2) loamy sand; weak granular structure; many fine roots; very friable; strongly acid; abrupt smooth boundary.
- ____8 to 14 inches; greyish brown (10YR 5/2) loamy sand; weak granular structure; common fine roots; very friable; strongly acid; gradual wavy boundary.
- ____14 to 18 inches; yellowish brown (10YR 5/6) sandy loam; weak subangular blocky structure; friable; common fine roots; strongly acid; gradual wavy boundary.
- ____18 to 30 inches; yellowish brown (10YR 5/4) sandy clay loam; moderate subangular blocky structure; firm; patchy clay films on ped faces; strongly acid; gradual wavy boundary.
- ____30 to 45 inches; yellowish brown (10YR 5/4) sandy clay loam; moderate subangular blocky structure; few strong brown (7.5 YR 5/6) mottles; firm; common clay films on ped faces; very strongly acid; gradual wavy boundary.
- 45 to 60 inches; mottled yellowish brown (10YR 5/6), strong brown (7.5YR 5/6), light grey (10YR 6/1), and dark red (10R 3/6) sandy clay l oam; weak subangular blocky structure; firm; few clay films; strongly acid.

30. Cartecay series, 1% slope, on floodplain in Piedmont; in pasture.

____0 to 10 inches; dark brown (10YR 3/3) loam; weak fine granular structure; very friable; many fine roots; many fine mica flakes; moderately acid; abrupt smooth boundary.

___9 to 22 inches; yellowish brown (10YR 5/4) loam; common medium distinct dark brown (10YR 3/3) mottles; massive; very friable; many fine roots; many fine mica flakes; thin strata of silt loam and sandy loam; moderately acid; clear smooth boundary.

___22 to 40 inches; pale brown (10YR 6/3) sandy loam; massive; very friable; many fine mica flakes; thin strata of loamy sand; common medium distinct yellowish brown (10YR 5/4) masses of iron and light gray (10YR 7/2) iron depletions; moderately acid; gradual wavy boundary.

____40 to 60 inches; gray (10YR 5/1) loamy sand; single grain; loose; few gravel; many fine mica flakes; moderately acid.

31. For these profiles, give the following:

	<u>Dothan</u>	<u>Cartecay</u>
A. Diagnostic surface horizon:		
B. Diagnostic subsurface horizon:		
C. Soil order:		
D. Parent material:	<u></u>	
E. Drainage class/depth to water table	<u></u>	
F. Suitability of use (Good or Bad) for—		
Agricultural use:		
Urban use:		

BONUS (+2 pts): Most Piedmont Bt's are red; many in the Coastal Plain are yellow. Explain why, briefly, using $Fe_2O_3 + H_2O \leftrightarrow 2FeOOH$.